PLANT GROWTH SUBSTANCES

ANSWERS & MARK SCHEMES

QUESTIONSHEET 1

Effect	Auxins	Gibberellins	
Promote cell enlargement	1	1	;
Break bud dormancy	×	1	;
Promote ripening of fruit	×	×	;
Inhibit lateral growth	1	1	;
Promote root formation in cuttings	1	×	;
Promote fruit growth	1	1	;
Stimulate stomatal opening	×	×	;

TOTAL 7

QUESTIONSHEET 2

(a) (i)	coleoptile bending to left; taller than in B;	2
(ii)	tip is secreting auxin; diffuses down into the agar gel;	2
(iii)	right hand side of coleoptile receives auxin/more auxin than left hand side; thus cells on right hand side exhibit greater elongation causing bending to left;	2
. , .	in) loosens the rigid cellulose framework/cellulose microfibrils of the cell wall; otic uptake of water then enables swelling/elongation;	2
		TOTAL 8

Name of growth substance	Site of production	One main effect
abscisic acid;	leaves/stems/ fruits/seeds;	
	ripening fruits;	promotes fruit ripening;
auxin;	stem/root tips;	
gibberellin;	embryo/in seeds/buds/ young leaves/root tips;	
cytokinins;	fruits/seeds;	

PLANT GROWTH SUBSTANCES

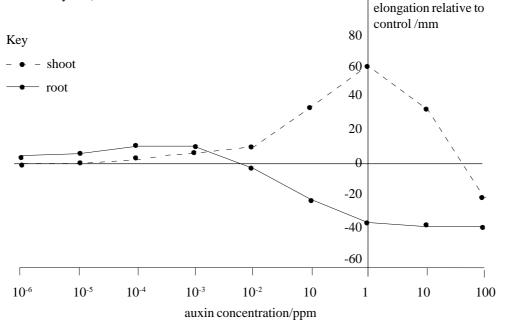
ANSWERS & MARK SCHEMES

QUESTIONSHEET 4

(a) (i)	all caused greater elongation than the control;	
	GA only had a small increase in (cell) elongation compared with the control group;	
	IAA only had a much larger effect on stimulating (cell) elongation, especially over the first 30 hours;	
	IAA + GA had the greatest effect, especially over the first 24 hours/increase over three times greater that	n in control;
		max 3
(ii)	when one substance enhances the effects of another substance;	
	gibberellic acid enhances the effect of auxin on (cell) elongation/vica versa;	2
(111)		_
	cutting (the internodes) may interfere with their growth;	1
(b) auvi	ins stimulate cell elongation;	
	•	2
Cyto	kinins stimulate cell division/mitosis;	2
(c) to er	ncourage fruit setting;	
. ,	ause the development of seedless fruits/induce parthenocarpy;	
	imulate amylase production to promote 'malting' in the brewing industry;	max 2
10 31	initiate any ase production to promote matching in the browing industry,	mux 2
		TOTAL 10

QUESTIONSHEET 5

- 1. ethene;
- 2. cytokinin;
- 3. auxin;
- 4. abscisic acid;
- 5. abscisic acid;
- 6. auxin/gibberellin;
- 7. cytokinin;
- 8. auxin;
- 9. gibberellin;
- 10. gibberellin;


TOTAL 10

PLANT GROWTH SUBSTANCES

ANSWERS & MARK SCHEMES

QUESTIONSHEET 6

(a) axes (auxin on X axis, elongation on Y axis); suitable scale (at least half of graph paper and easy to use); accurate plotting; points joined with ruler (IOB recommendations); curves labelled/key; (accept alternative layouts)

- (b) root elongation stimulated most at low auxin concentration/around 10⁴ppm; root elongation inhibited above 10⁻²ppm/at higher auxin concentrations; shoot elongation stimulated best at high auxin concentratioon/1 ppm; not stimulated at low auxin concentrations/below 10⁻⁵ppm; inhibited at concentrations of 100ppm; max 4
 (c) (plantains are broad leaved whereas) grasses are narrow leaved;
- thus plantains tend to absorb more auxin than grasses and so plantains affected more; inhibit root growth whilst causing 'bolting'/overgrowth of shoots which die;

TOTAL 12

3

5

PLANT GROWTH SUBSTANCES

ANSWERS & MARK SCHEMES

QUESTIONSHEET 7

 (a) cause increased root growth in low concentrations; stimulate shoot growth in higher concentrations; inhibit root growth in high concentrations; low concentrations have no effect on shoot growth/very high concentrations inhibit shoot growth; 	ax 3
 (b) (i) could cause inhibition of root growth; since would accumulate inside the cells; causes rapid cell elongation so that stems grow too quickly; but no extra lignified tissue in plant stem; thus stem collapses/loss of too much water through extra leaves; 	ax 3
 (ii) auxins are absorbed through the plant surface; broad leaved plants absorb relatively more auxin than narrow leaved plants; thus broad leaved plants are subjected to a concentration which inhibits root growth/causes shoots to bolt (or eqiva narrow leaved plants are only subjected to a concentration which does not adversely affect root or shoot growth; 	lent); ax 3
 (c) different types of protein have different amino acid sequences; and thus have different secondary and tertiary structures/3D structures; and so produce different shaped channels; 	ax 2
TOTAL	, 11

(a) (i)	auxin secreted by tip of stem; diffuses down to elongation zone; causes elongation of cells by modifying their cellulose walls, allowing osmotic expansion; cytokinin may stimulate apical cell division;	max 3
(ii)	gibberellic acid is produced in presence of Le allele; acts synergistically with auxin/enhances the effect of auxin thus causing taller growth;	2
such	ronmental factors also influence growth; a as light intensity/light duration/light wavelength/temperature/water availability/nitrate availability/ other valid example;	2
(c) (i)	auxin promotes apical dominance/inhibits lateral growth; this affect is enhanced in the presence of gibberellin/synergism;	2
(ii)	cut off the apical buds so that lateral buds grow; add cytokinin which stimulates lateral growth/inhibits apical dominance by auxin;	max 1
		TOTAL 10

QUESTIONSHEET 9

(a) (i)	slow transportation in plants + rapid transportation in animals; transported by diffusion/in phloem + transported in blood; synthesised in many cell sites + synthesised in specific endocrine glands; slow acting/sustained effect + usually fast acting/short term effect;	max 3
(ii)	ripe bananas produce (large quantities of gaseous) ethene; ethene stimulates ripening;	2
(b) (i)	when the presence of one substance enhances the effects of another substance; gibberellins enhance the effect of auxins in causing shoot growth;	2
(ii)	when the presence of one substance inhibits the effects of another substance; cytokinins/ethene break bud dormancy whereas abscisic acid promotes bud dormancy/any other valid example;	2
(c) (i)	the presence/growth of the apical bud suppresses the growth of axillary buds;	1
(ii)	auxin promotes apical dominance and inhibits lateral growth;	

PLANT GROWTH SUBSTANCES ANSWERS & MARK SCHEMES

gibberellin acts synergistically with auxin to increase apical dominance/suppress lateral growth; cytokinins inhibit apical dominance/enhance lateral growth; max 2 TOTAL 12

QUESTIONSHEET 10

 (a) positive phototropism is when shoots grow towards unilateral light; plants/seedlings in a room tend to grow towards the windows/any correct example; phototaxism is when a complete organism moves towards the light; Chlamydomonas/Euglena swimming towards the light/any correct example; 	4
(b) etiolation is when a plant grows very tall/spindly and lacks chlorophyll; caused by being in continuous darkness/too much auxin activity; abscission is leaf fall (in deciduous trees); stimulated by abscisic acid;	4
(c) long day plants are stimulated to flower by dark periods shorter than a critical length; Potato/Henbane (need darkness shorter than a 13 hour length)/any correct example; short day plants are stimulated to flower by dark periods longer than a critical length; Cocklebur/Tobacco (need dark periods longer than about 9 hours)/any correct example;	4
(d) (pale blue) plant pigment involved in photoperiodism/flowering/onset of germination; reference to two forms/P _R and P _{FR} /P ₆₆₀ and P ₇₃₀ ; parthenocarpy is the production of seedless fruits/fruit formation in absence of pollination; parthenocarpy is promoted by auxin and gibberellin;	4
	TOTAL 16

QUESTIONSHEET 11

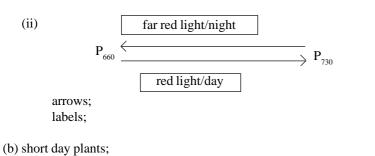
IAA/indole acetic acid; apical; elongation; tropic/growth responses; light; gravity/water; adventitious; lateral; fruit; parthenocarpy; tips; diffuses;

PLANT GROWTH SUBSTANCES

ANSWERS & MARK SCHEMES

1

2


2

2

TOTAL 7

QUESTIONSHEET 12

(a) (i) phytochrome;

require a dark period longer than a critical length;

(c) Any two of: temperature change/humidity/soil water availability/light intensity;;

(a) (i)	tips intact and so auxin is present; auxin stimulates apical dominance and suppresses axillary growth; thus no change seen in axillary growth/slight growth only;	3
(ii)	tips removed and so no auxin produced; thus no inhibitory action on axillary growth; thus axillary shoot lengths increase considerably/by approx 115mm more than C/by approx. 130 mm;	3
(iii)	no auxin present so no inhibition of axillary growth; cytokinins stimulate axillary growth by increasing mitotic rate; thus shoots increase in length by the largest amount/by approx 160mm more than C/by approx. 168 mm;	3
(b) (i)	no lateral growth/less lateral growth than in A;	1
(ii)	apical bud exerts apical dominance/suppresses lateral growth; produces auxins which inhibit axillary growth;	2
(c) Any	two of: use similar/same batch of plants/similar ages/apply same quantity of hormone to each plant/ constant temperature/constant all round light intensity/equal watering/any other valid precaution;;	2
(d) (i)	cut off lateral shoots leaving apical buds intact;	1
(ii)	cut off apical shoots to stimulate axillary buds to grow;	1
	Т	OTAL 16

PLANT GROWTH SUBSTANCES

ANSWERS & MARK SCHEMES

QUESTIONSHEET 14

promotes seed dormancy; thus seeds will not germinate until conditions become suitable;	2
promotes leaf fall/abscission; thus no water loss by transpiration when soil water may be unavailable/frozen;	2
promotes bud dormancy; so that growth does not occur during unfavourable conditions;	2
inhibits stem growth; particularly during drought/waterlogging, thus increasing survival chances;	2
promotes closing of stomata; particularly during water shortage/wilting, thus increasing survival chances;	2
	TOTAL 10

QUESTIONSHEET 15

 (a) abscisic acid inhibits germination until washed out of the seed/overridden by gibberellin; gibberellins break dormancy by stimulating enzyme synthesis (in the aleurone layer); enzymes enable mobilisation of starch/oil reserves/proteins (in the endosperm); cytokinins stimulate cell division in the embryo (allowing growth); auxins and gibberellins act together to produce cell elongation in the plumules/shoots and radicles/roots; 	5
(b) auxins help fruit setting and fruit growth;	
effect enhanced in the presence of gibberellin/ref. synergism of auxin and gibberellin;	
auxins and gibberellins can also induce parthenocarpy/fruit setting without pollination;	
this results in the production of seedless fruit/grapes/oranges;	
cytokinins also promote fruit growth/ethene induces ripening;	5
(c) auxin inhibits abscission/leaf fall;	
unless the process has already started when it promotes it;	
abscisic acid promotes leaf fall;	
particularly when the plant is stressed by drought;	
when its effects override those of auxin/ref. antagonism of auxin and abscisic acid;	5
	TOTAL 15

(i)	synthetic auxin/IAA; delays ageing/senescence/abscission/fall (of fruit);	2
(ii)	following imbibition/uptake of water, gibberellins are released; gibberellins stimulate enzyme/amylase synthesis/transcription; amylase converts starch to sugars; sugars provide energy for seedling; gibberellins normally produced by embryo;	max 3
(iii)) apical dominance; shoot tip inhibits growth of laterals below it; by releasing auxin which suppresses lateral buds; encourages height growth rather than width/encourages growth towards light; tip removal removes inhibiting effect of auxin;	max 3
		TOTAL 8

PLANT GROWTH SUBSTANCES

ANSWERS & MARK SCHEMES

QUESTIONSHEET 17

(a) (i)	any tissue/part of plant used to start a culture; should be healthy/must be living tissue/not dead xylem/sclerenchyma;	2
(ii)	callus is made up of undifferentiated plant cells; all cells could undergo mitosis/differentiate into any tissue;	2
(iii)	to prevent fungal/microbial growth/contamination; nutrients in growth medium would provide an ideal substrate for fungal/microbial growth;	2
(iv)	carbon source/suitable sugar/sucrose; major mineral salts/nitrates/phosphates; trace elements; vitamins/thiamine/nicotinamide; hormones/auxin/kinin; water;	max 4
(v)	light; suitable temperature/room temperature/26°C;	2
(b) (i)	A: auxin concentration must be adjusted to 3 mg dm ⁻³ ; kinin concentration must be adjusted to 0.2 mg dm ⁻³ ;	
	B: auxin concentration must be reduced to 0.03 mg dm ⁻³ ; kinin concentration must be raised to 1 mg dm ⁻³ ;	
	C: auxin concentration must be raised to 3 mg dm ⁻³ ; kinin concentration must be reduced to 0.02 mg dm ⁻³ ;	6
(ii)	kinins stimulate rate/frequency of mitosis in the presence of auxins; synergistic effect;	2
		TOTAL 20

 (a) test group of stems had tips covered with foil; control group of stems without foil/with tips uncovered; exposed to unilateral light for several hours; control group grew towards light, test group grew straight up; test group then covered with foil around elongation zone with tips uncovered; when exposed to unilateral light, grew towards light; 	max 4
 (b) ref to use of mica/plastic/metal strips; inserted into stem from side just beneath tip; to penetrate about half way into stem; one set of stems with mica inserted on dark side of stem and one set with mica inserted on light side of stem; control group of stems with no mica; when exposed to unilateral light stems with mica on the light side and the controls bent towards the light, those with mica on the dark side grew straight up; 	max 4
 (c) select flowers of same age/from newly opened buds; place freshly cut flowers in solutions of different salicylate concentrations; over a range from a trace of salicylate up to a dilute solution; have a control group in water with no salicylate; keep solutions topped up with water not with more solution; measure time until floral parts start to fall/wither; 	max 4

PLANT GROWTH SUBSTANCES

ANSWERS & MARK SCHEMES

QUESTIONSHEET 19

(a) (i) $410 - 640$ nm; (allow ± 5 either way)	1	
(ii) $390 - 410 \text{ nm}; 640 - 700 \text{ nm}; (allow \pm 5 \text{ either way})$	2	
(b) the last wavelength provided determines the effect/the wavelengths negate each other/ pigment exists in two inter-convertible forms;(c) plant will not flower;		
until it has passed through cold season/winter; protects flowers/prevents flowering in autumn/wrong season;	max 2	
	TOTAL 6	

 (a) usually shown graphically; measures the effectiveness of different wavelengths in stimulating a process/named process; 	2
(b) red light/650-670 nm most effective (in inducing flowering); photoperiod pigment differs from chlorophyll; since it only has one high activity peak but chlorophyll has two;	max 2
(c) same pigment in both types of plant; must operate differently in the two types of plant;	2
	TOTAL 6